

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2022 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

APPLIED MATHEMATICS

TIME ALLOWED: THREE HOURS			MAXIMUM MARKS = 100		
NOTE: (i) (ii) (ii) (iv) (v) (v) (vi)	Atte) All i) Can y) No Ext) Use	empt ONLY FIVE questions. ALL que the parts (if any) of each Question must adidate must write Q. No. in the Answer Page/Space be left blank between the an ra attempt of any question or any part o e of Calculator is allowed .	stions carry EQUAL marks be attempted at one place instead of at different place Book in accordance with Q. No. in the Q.Paper. Inswers. All the blank pages of Answer Book must be c f the attempted question will not be considered.	s. rossed.	
Q. No. 1.	(a)	Let u=[y, z, x] and v=[yz, zx, xy],	f = xyz and $g = x + y + z$. Find div (grad (<i>fg</i>)).	(10)	
	(b)	Evaluate $\int_{C} F(r) dr$ counter cloc Green's theorem, where F = [y, -x], C	kwise around the boundary <i>C</i> of the region <i>R</i> by <i>C</i> the circle $x^2 + y^2 = 1/4$	(10)	
Q. No. 2.	(a)	Three forces P, Q, R, acting at a pear and Q is double of the angle between	bint, are in equilibrium, and the angle between P en P and R. Prove that $R^2 = Q(Q - P)$.	(10)	
	(b)	Find the centre of mass of a semi- as the square of the distance from	circular lamina of radius a whose density varies he centre.	(10)	
Q. No. 3.	(a)	A particle moves in such a way that its position vector at time t is $r = (a \cos nt)i + (b \sin nt)j$, Where a, b, n are constants and a>b>0. Show that the path of the particle is an ellipse of semi-major and minor axes a, b respectively, and that the field of force is directed towards the centre of the ellipse. Also find the maximum speed.			
	(b)	An aeroplane is flying with uniform a, whose centre is at a height h ver bomb is dropped from the aeroplan O, show that Y satisfies the equat $KY^2 + Y(a^2)$ Where $K = h + \frac{ga^2}{2v_0^2}$.	in speed vo in an arc of a vertical circle of radius tically above a point O of the ground . If a ne when at a height Y and strikes the ground at on $(2 - 2hK) + K(h^2 - a^2) = 0$,	(10)	
Q. No.4.	(a)	Solve the given initial-value prob solution is defined. $xy'+y = e^x$,	lem. Give the largest interval I over which the $y(1) = 2$.	(10)	
	(b)	Find the general solution of the giv y''' - 4y'' - y'' - y''' - y'' - y'' - y''' - y'''' - y''' - y'''' - y'''' - y'''' - y''''''''	then higher-order differential equation. 5y' = 0	(10)	
Q. No. 5.	(a)	Find two power series solutions ordinary point $x=0$. y'' - 2xy' + y'' = 0	of the given differential equation about the $y = 0$.	(10)	
	(b)	Find the general solution of the give	yen Bessel's equation on $(0, \infty)$. $x^2y'' + xy' + (9x^2 - 4)y = 0$	(10)	

Q. No. 6. (a) Find the Fourier series of the given function f(x), which is assumed to have the period 2π . Show the details of your work. (10)

$$f(x) = \begin{cases} x, & -\pi < x < 0\\ \pi - x, & 0 < x < \pi \end{cases}$$

- (b) Find u(x,t) for the string of length L=1 and $c^2=1$ when the initial velocity is zero (10) and the initial deflection with small k (say, 0.01) is kx(1-x).
- Q. No. 7. (a) Use the Bisection method to determine an approximation to the root of the given (10) function in the interval [1,2] that is accurate to at least within 10^{-4} . $f(x) = x^3 + 4x^2 - 10 = 0$.
 - (b) Values for $f(x) = xe^x$ are given in the following table. Use all the applicable threepoint and five-point formulas to approximate f'(2.0). (10)

Х	1.8	1.9	2.0	2.1	2.2
f(x)	10.889365	12.703199	14.778112	17.148957	19.85503

Q. No. 8. (a) Use the Modified Euler method to approximate the solution to each of the (10) following initial-value problem,

$$y' = -5y + 5t^2 + 2t, \ 0 \le t \le 1, \qquad y(0) = \frac{1}{3}, with \ h = 0.1$$

(b) Use a fixed-point iteration method to determine a solution accurate to within 10^{-2} (10) for $x^4 - 3x^2 - 3 = 0$ on [1, 2]. Use $p_0 = 1$.

